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a b s t r a c t

In this study, a prediction model based on artificial neural network is constructed for surface temperature
simulation of nickel–metal hydride battery. The model is developed from a back-propagation network
which is trained by Levenberg–Marquardt algorithm. Under each ambient temperature of 10 ◦C, 20 ◦C,
30 ◦C and 40 ◦C, an 8 Ah cylindrical Ni–MH battery is charged in the rate of 1 C, 3 C and 5 C to its SOC
of 110% in order to provide data for the model training. Linear regression method is adopted to check
eywords:
rediction model
ack-propagation network
attery surface temperature
harging rate
mbient temperature

the quality of the model training, as well as mean square error and absolute error. It is shown that the
constructed model is of excellent training quality for the guarantee of prediction accuracy. The surface
temperature of battery during charging is predicted under various ambient temperatures of 50 ◦C, 60 ◦C,
70 ◦C by the model. The results are validated in good agreement with experimental data. The value of
battery surface temperature is calculated to exceed 90 ◦C under the ambient temperature of 60 ◦C if it is
overcharged in 5 C, which might cause battery safety issues.
. Introduction

Nowadays electric-driven vehicles are increasingly receiving
oncerns for the reasons of petroleum shortage and environment
ollution. Power battery is extensively studied as a key device to
rompt the utilization of new energy automobiles. Besides elec-
rochemical performance, battery safety is of crucial significance
o vehicles. For the close relationship with safety issue, battery
hermal behavior is intensively focused in many studies. Shi et al.
1] studied heat generation in fast charge process of nickel–metal
ydride battery through a two-dimensional mathematical model.
raki et al. [2] discussed the thermal behavior of small size Ni–MH
attery in fast charge and discharge cycle. Kim et al. [3] investigated
n thermal runaway of Lithium-ion battery via a three-dimensional
hermal model. Zhang [4] analyzed three types of heat generation
ources of cylindrical Li-ion battery using mathematic model calcu-
ation. Cai and White [5] proposed a thermal model of Li-ion battery
ased on multi-physics fields with the help of commercial soft ware
COMSOL Inc. Multi-physics). However, generally, the proposed

odels are involved with intricate internal physical–chemical reac-
ions and complicated mathematical computing [6]. It will be

reatly useful to construct a model for thermal behavior study of
atteries with a simple and practicable method. For the reason,
rtificial neural network (ANN) which is usually used to deal with
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multiple-input and multiple-output cases irrespective of an inter-
nal mechanism [7] was employed for constructing a prediction
model to simulate the surface temperature of Ni–MH battery in
this work.

In the case of Ni–MH battery, its heat generation mainly appears
in the process of charging, which may become more remarkable
upon overcharging and fast charging [8]. In author’s previous work,
it was found that when the surface temperature of Ni–MH battery
exceeded 90 ◦C, the electrolyte leakage might occur. If the temper-
ature continued to rise, battery explosion would happen possibly.
It will be effective to prevent the battery from thermal runaway
if its surface temperature could be simulated accurately. As men-
tioned above, based on back-propagation (BP) network affiliating to
ANN, a prediction model was constructed to focus on the changes of
battery surface temperature during charging under various ambi-
ent temperatures, especially, under higher ambient temperatures
(50 ◦C, 60 ◦C, 70 ◦C), battery safety was discussed as well.

2. Model descriptions

As a computational model mimicking human brain thinking,
ANN has been applied extensively in a number of scientific and
engineering domains. It is a massively parallel distributed proces-
sor that has a natural propensity for accommodating experiential

regulation and making it available for use [9]. In practical applica-
tions, the most commonly proposed ANN structure is known as
multi-layer perceptron which is a feed-forward neural network
consisting of one input layer, one or more hidden layers and one

dx.doi.org/10.1016/j.jpowsour.2012.02.059
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:mudb@bit.edu.cn
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utput layer. Hidden Layer is composed of a number of processing
nits called neurons that can process the data from input layer, and
he corresponding result will be given out by the output layer. In
his process, the feed-forward neural network intends to catch the
otential regulation of input data by taking advantage of its good

earning ability. So, it is available to infer output results through
he mastered regulation when new data are input to the model
11]. As a result, the processing of complex non-linear issues can
e simplified with the ANN modeling [12].

For Ni–MH battery, heats generated in the process of charging
nclude reaction heat, combination heat, polarization heat and ohm
eat [13]. Reaction heat is exothermic during regular charging (as
een in Eq. (1)) [14], while hydrogen and oxygen reacts releas-
ng plenty of combination heat during overcharge (as seen in Eq.
2)) [13]. Polarization and ohm heats are generated along with the
hole charging process. Thus, it is inevitable to raise the surface

emperature of battery with these several aspects of heats gen-
rated. It is speculated that, the more heat generated, the higher
attery surface temperature becomes under the same charging
onditions.

i(OH)2 + M → NiOOH + MH −14.65 kJ mol−1 (1)

H + 1/2O2 → H2O −285.9 kJ mol−1 (2)

In experiments, it is found that the surface temperature (Ts) of
attery is influenced by charging current (I), ambient temperature
Tamt) and charging time (t) if the heat dissipating to environment is
nconsidered. However, the specific calculation mode is unknown
mong these variables. But, Ts might be expressed in using of Eq.
3),

s = f (I, Tamt, t) (3)

In order to obtain Ts from the function which does not give out
he detailed expression of the variable relationship, it is helpful to
ntroduce an ANN model in the work based on above statements.
he model’s schematic diagram is shown in Fig. 1. It is expected
hat Ts could be calculated out through the model and the purpose
f predicting Ts during charging under different ambient tempera-
ures could be achieved.

The learning ability of ANN is realized by means of model
raining. The most popular training algorithms recommended
re back-propagation (BP) algorithm and its variants [15]. Back-
ropagation means that the network error will be propagated back

f it does not reach an expected value in the model training process,
eanwhile the network weights and biases values are adjusted

onstantly to obtain the minimum error [16]. The feed-forward
eural network trained by BP algorithm is often called BP network
hich is an ideal choice to the model construction of this work.
ased on BP network, the prediction model is designed and its
tructure with three layers is illustrated in Fig. 2, where param-
ters adopted in the model are determined by trial and error. p
epresents the data input to the model in the chart, u means the
odel output result that is the Ts, w and b are of weights and biases

alues, respectively. There are two nodes in the input layer, because
hen current I is set up, Ts will change with Tamt and t. According to
olmogorov Theorem (j = 2i + 1) [10], the number of neurons used

n hidden layer can be determined as 5. That one neuron is set up in
he output layer is ascribed to Ts as an only output of the model. The
ransfer functions selected for the model construction are tangent-
igmoid and log-sigmoid in last two layers, respectively, written in
qs. (4) and (5) [17].

n −n
an-sigmoid function, f (n) = e − e

en + e−n
(4)

og-sigmoid function, f (n) = 1
1 + e−n

(5)
urces 208 (2012) 378–382 379

The output value (yj) of each neuron (j) in the hidden layer is
calculated by Eq. (6) [18],

yj = f

(
2∑

i=1

piwij + bj

)
, i = 1, 2, j = 1, . . . , 5 (6)

here pi is input vector, wij is weight value connecting the ith input
vector and the jth neuron, bj is biases values, f ( ) represents tan-
sigmoid transfer function. On the basis of the results of Eq. (6), the
model final output u can be calculated from Eq. (7) [18],

uv = f

⎛
⎝ 5∑

j=1

yjwjv + bv

⎞
⎠ , v = 1 (7)

here v is the number of neurons in the output layer, f ( ) represents
log-sigmoid transfer function. Thereafter, the prediction values of
Ts are attained finally through above modeling.

In ANN modeling, it is important to choose a suitable algorithm
to train the constructed model. For BP network, the basic principle
of BP training complies with gradient descent method which can
reduce the network error by altering the weights and bias values
along the direction of the negative gradient. In this work, a vari-
ant of the gradient descent method called Levenberg–Marquardt
(LM) algorithm is employed to train the constructed model [9]. LM
algorithm is expressed in Eq. (8) [9],

xk+1 = xk − [JT J + zD]
−1

JT c (8)

here xk represents a vector of weights or biases, J is Jacobian matrix
including first derivatives of network errors with respect to weights
and biases [19], D is unit matrix, c is network error, z is test scalar.
LM algorithm integrates together gradient descent method and
Newton method. Gradient descent method makes a good conver-
gence, and when it is used for ANN training, the initial iterations
descend down quickly. However, with closing to optimal value, the
target function becomes to descend down very slowly. Newton
method can produce an ideal search direction nearby the opti-
mal value although it is inferior to gradient descent method in
convergence effect. Thus, the iteration can continue to proceed
quickly. Under the convergence guarantee circumstance, LM algo-
rithm is expected to convert to Newton method with the aim
of ensuring model training speed and accuracy [19]. The train-
ing quality of the constructed model needs to be evaluated for its
effective use.

3. Experiments

A 8 Ah cylindrical Ni–MH battery was charged to its SOC of 110%
in the rate of 1 C, 3 C and 5 C under each ambient temperature
of 10 ◦C, 20 ◦C, 30 ◦C and 40 ◦C to obtain the training data for the
ANN prediction model. The data recording was carried out by an
infrared thermal imager (VarioCAM hr from German Infra Tec Com-
pany). The model was constructed in MATLAB software platform to
predict the surface temperature of battery charged under ambient
temperatures of 50 ◦C, 60 ◦C and 70 ◦C.

The learning rate was set as 0.05 during model training, and the
training epochs were 5000.

4. Results and discussion

4.1. Training results
The model’s training results are shown in Figs. 3–5. Fig. 3 is the
convergence curve of model’s mean square error (MSE). It is shown
that the MSE has almost converged at the 500th epoch where
the value is 4.98621e−006. Obviously, the model trained by LM
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Fig. 1. ANN model to predict the surface temperature of battery.
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Fig. 3. Mean square error (MSE) of the model.
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Fig. 4. Linear regression relationship between model outputs and targets.
k structure.

algorithm is of fast convergence and high accuracy. At the 5000th
training epoch, the value of MSE is 4.98657e−006, it changes little
compared with the value at the 500th epoch. In this case, the model
can be qualified as a well-trained one [20] that can be come into
use though the MSE does not achieve the ideal value of 0. Reason-
ably, 5000 epochs designed for training is enough for meeting the
demands of the model application.

Fig. 4 presents a linear regression relationship between each ele-
ment of the model output (u) and the corresponding target (ct) to
check the quality of the model training further, here u is the mod-
eling result and ct is practical data. S and m correspond to the slope
and the y-intercept of the regression line (red solid line) which is
given out by the trained model. The ideal fit is shown as a dashed
line (s = 1 and m = 0) when outputs are exactly equal to targets [21].
For the regression line, 1 and 4.04e−005 are obtained for s and m,
respectively, and the value of m is very close to 0. So, the regression
line and the ideal fit line almost overlap in the figure, it is indicated
that the model outputs fit the targets very well. R represents the
correlation coefficient between outputs and targets. If the value of
R reaches 1 or approaches to 1, the correlation will become much

better [22], then the ANN modeling will perform more effectively.
In the case of the trained model, R’s value of 1 means a perfect corre-
lation leading all output data (as marked in hollow cycle) distribute
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Fig. 5. Absolute errors (�e) between model outputs and targets.
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Fig. 8. Change curves of battery surface temperatures (BST, predicted data) with
time, charged in 5 C rate under various ambient temperatures.

Table 1
Predicted values of battery surface temperature (BST) at the end of charging, under
various ambient temperatures (Tamt).

Tamt (◦C) BST (◦C)

1 C 3 C 5 C

50 59.91 67.13 83.74
60 68.44 75.11 90.20
ig. 6. Change curves of battery surface temperatures (BST, predicted data) with
ime, charged in 1 C rate under various ambient temperatures.

n the regression line [23]. In conclusion, it is shown that the model
s of excellent training quality.

The absolute error between each element of the model output
nd the corresponding target is described in Fig. 5. The maximum
rror is 2.51 × 10−3 ◦C and the minimum value is 8.88 × 10−6 ◦C.
ctually, even considering the value of the maximum error, it is so

iny compared to the practical surface temperature of battery in
xperiments that it can be neglected. Also, it is elucidated that the
odel is trained with a high quality.

.2. Prediction results and validation

The curves of predicted Ts when the battery is charged in dif-
erent rates under various ambient temperatures are shown in
igs. 6–8. It is seen that the beginning values of these curves are
qual to the values of corresponding ambient temperatures. Ts will
et increase as the charging process going. The highest temper-
ture of battery surface appears at the end of charging. Besides,
s will become large as the ambient temperature rises when the
attery is charged in the same rate. Under the same ambient tem-
erature, the rise rate of Ts could be determined from the curve
lope. It will increase with the rising of charging rate. So, the Ts

ise rate is the highest in 5 C charging, while the value is the lowest

n 1 C charging. The results may be attributed to different polar-
zation effect generated when the battery is charged in different
ates.
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ig. 7. Change curves of battery surface temperatures (BST, predicted data) with
ime, charged in 3 C rate under various ambient temperatures.
70 76.09 81.96 94.33

The predicted values of Ts at the end of charging under vari-
ous ambient temperatures are listed in Table 1. Taking charging
under 60 ◦C for example, it is found that the terminal temperature
of battery surface is 68.44 ◦C when the charging rate is 1 C, it is
8.44 ◦C higher than the ambient temperature, while the difference
is 15.11 ◦C in the case of 3 C. However, if the charging rate changes
to 5 C, the surface temperature even reaches over 90 ◦C, and the
difference value becomes much larger. Certainly, the battery ther-
mal behavior is influenced as the charging rate increases. Moreover
the high surface temperature over 90 ◦C might cause battery safety
issues if no cooling measures are taken.

Fig. 9 is a comparison of the simulating results and the experi-

mental data. For the sake of safety, experiments were only carried
out under the ambient temperature of 50 ◦C to validate the model.
Results show that the simulated curves fit well with the measured
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Fig. 9. The comparison between simulating results and experimental data, ambient
temperature of 50 ◦C.
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ata in three cases of 1 C, 3 C and 5 C with a maximum temperature
ifference of 1.30 ◦C. It is acceptable to make the prediction with
uch a small error in contrast to the practical battery surface tem-
erature of above 50 ◦C. Clearly, the predicted values are in good
greement with the experimental data, which also confirms that
he model is effective in working.

In this study, the number of parameters involved in the ANN
odeling is relatively less in reference to empirical models [1,2]

erforming similar simulations. The model construction, training
nd prediction can be finished in a little time. Furthermore, it is
upposed that the prediction model could be extended to Li-ion
atteries to study their thermal behavior and serve for thermal
anagement system of battery pack.

. Conclusions

An ANN model was constructed for the surface temperature (Ts)
rediction of Ni–MH battery. The model was developed from BP
etwork containing three layers. There are two nodes in the input

ayer, five neurons in the hidden layer and one neuron in the out-
ut layer. The model was trained by LM algorithm and its training
uality is examined by linear regression method as well as model
SE and absolute error. It is shown that the model is of excellent

raining quality for the guarantee of prediction accuracy. Then, Ts

alues are computed by the well-trained ANN model under vari-
us ambient temperatures and charging rates. It is validated that
s accord well with the experimental data, which manifests that
he model is effective in simulation. The prediction results indicate
hat the surface temperature would even exceed 90 ◦C when the
attery was overcharged in the rate of 5 C under the ambient tem-
eratures of 60 ◦C and 70 ◦C. In this case, the battery might suffer

afety problem more readily if no effective measures were taken
o cool down it. Also, it is suggested that the prediction method
ould be used in Li-ion batteries and thermal management system
f battery pack.
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